Perturbation Corrections in Approximate Inference: Mixture Modelling Applications
نویسندگان
چکیده
Bayesian inference is intractable for many interesting models, making deterministic algorithms for approximate inference highly desirable. Unlike stochastic methods, which are exact in the limit, the accuracy of these approaches cannot be reasonably judged. In this paper we show how low order perturbation corrections to an expectation-consistent (EC) approximation can provide the necessary tools to ameliorate inference accuracy, and to give an indication of the quality of approximation without having to resort to Monte Carlo methods. Further comparisons are given with variational Bayes and parallel tempering (PT) combined with thermodynamic integration on a Gaussian mixture model. To obtain practical results we further generalize PT to temper from arbitrary distributions rather than a prior in Bayesian inference.
منابع مشابه
Analytical Solution of Steady State Substrate Concentration of an Immobilized Enzyme Kinetics by Laplace Transform Homotopy Perturbation Method
The nonlinear dynamical system modeling the immobilized enzyme kinetics with Michaelis-Menten mechanism for an irreversible reaction without external mass transfer resistance is considered. Laplace transform homotopy perturbation method is used to obtain the approximate solution of the governing nonlinear differential equation, which consists in determining the series solution convergent to the...
متن کاملTHE ELZAKI HOMOTOPY PERTURBATION METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS
In this paper, Elzaki Homotopy Perturbation Method is employed for solving linear and nonlinear differential equations with a variable coffecient. This method is a combination of Elzaki transform and Homotopy Perturbation Method. The aim of using Elzaki transform is to overcome the deficiencies that mainly caused by unsatised conditions in some semi-analytical methods such as Homotopy Perturbat...
متن کاملTHE APPLICATION OF THE VARIATIONAL HOMOTOPY PERTURBATION METHOD ON THE GENERALIZED FISHER'S EQUATION
In this paper, we consider the variational homotopy perturbation method (VHPM) to obtain an approximate series solution for the generalized Fisher’s equation which converges to the exact solution in the region of convergence. Comparisons are made among the variational iteration method (VIM), the exact solutions and the proposed method. The results reveal that the proposed method is very effectiv...
متن کاملSolving Fuzzy Impulsive Fractional Differential Equations by Homotopy Perturbation Method
In this paper, we study semi-analytical methods entitled Homotopy pertourbation method (HPM) to solve fuzzy impulsive fractional differential equations based on the concept of generalized Hukuhara differentiability. At the end first of Homotopy pertourbation method is defined and its properties are considered completely. Then econvergence theorem for the solution are proved and we will show tha...
متن کاملPerturbative corrections for approximate inference in Gaussian latent variable models
Expectation Propagation (EP) provides a framework for approximate inference. When the model under consideration is over a latent Gaussian field, with the approximation being Gaussian, we show how these approximations can systematically be corrected. A perturbative expansion is made of the exact but intractable correction, and can be applied to the model’s partition function and other moments of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 10 شماره
صفحات -
تاریخ انتشار 2009